
Probabilistic analysis of linear programming

relaxations

Martin Wainwright

Department of Electrical Engineering and Computer Science

Department of Statistics

UC Berkeley, CA

Email: wainwrig@{eecs,stat}.berkeley.edu

Based on joint work with:

Costis Daskalakis, Alex Dimakis, Richard Karp (UC Berkeley)

Introduction

• message-passing: now standard method in various domains (coding,

physics, computer vision, computational biology....)

• linear programming (LP) relaxation: standard method in computer

science, operations research etc.

• turn out to be numerous connections between these two classes of

methods

• some useful features of LP relaxation:

– certificates of correctness

– hierarchies of relaxations (guaranteed improvement; increased cost)

– distinct conceptual perspective on message-passing

– alternative avenue to finite-length results

Outline

1. Background

• Motivation

• First-order (tree-based) relaxation for combinatorial optimization

• Connections to physics and message-passing

2. LP relaxation for LDPC decoding

• past and on-going work

• constant fraction in adversarial setting

• notion of dual witness

3. Probabilistic analysis of LP decoding

• combinatorial characterization via hypergraph flow

• improved dual witness: generalized (p, q) matchings

• “almost-always” expansion

Combinatorial optimization on factor graphs

• consider a combinatorial optimization problem with objective

defined by factor graph G = (V, F)

x1 x2 x3 x4 x5 x6 x7 x8

a b c d

V ≡ variable nodes

F ≡ factor nodes

E ≡ variable–factor edges

• variable xi ∈ {0, 1, . . . ,m− 1} associated with node i ∈ V

• local cost ψa(xV (a)) at factor a over variable neighbors V (a)

• goal: maximize cost formed by product of factors

arg max
x

G(x) := arg max
x∈{0,1,...,m−1}n

{

∏

i∈V

ψi(xi)
∏

a∈F

ψa(xV (a))

}

.

From integer program to equivalent moment problem

1. Cost function is additive over graph structure:

F ∗ = max
x∈Xn

F (x) = max
x

{

∑

i∈V

logψi(xi) +
∑

a∈F

logψa(xN(a))

}

.

2. Reformulate as equivalent optimization over probability

distributions µ with support over x ∈ Xn

F ∗ = max
µ∈Q

∑

x∈Xn

µ(x)

[

∑

i∈V

logψi(xi) +
∑

a∈F

logψa(xN(a))

]

.

3. Reformulate again as equivalent optimization over globally

consistent marginal distributions {µi, i ∈ V } ∪ {µa, a ∈ F}:

F
∗ = max

µi,µa∈M

"
X

i∈V

X

xi

µi(xi) logψi(xi) +
X

a∈F

X

xa

µa(xa) logψa(xN(a))

#

.

Marginal polytope for graphical model

• How hard is to an integer program (IP) on the graph G?

• Equivalent question: how hard is to characterize the marginal

polytope?

Marginal polytope for factor graph G = (V, F):

µi(·) = local marginal over xi, i ∈ V

µa(·) = local marginal over xN(a) at factor a, a ∈ F

MARG(G) = {µi, i ∈ V, and µa, a ∈ F | (µi, µa) consistent with global q(·)} .

• MARG(G) has O(n) facets for trees

• O(mt n) facets for graphs of treewidth t

• super-exponential # facets for general graphs

(DezLau97, WaiJor03)

Tree-based (1st-order) LP relaxation

• impose local normalization constraints on each pseudo-marginal µi

∑

xi

µi(xi) = 1.

• impose local marginalization constraints on each factor

pseudomarginal µa:
∑

xi,i∈N(a)\j

µa(xN(a)) = µj(xj).

• combined with non-negativity constraints, call resulting polytope

LOCAL1(G)

Some observations:

1. For any tree, LOCAL1(T) = MARG(T).

2. For general graphs, MARG(G) (LOCAL1(G)

Codeword polytope

Definition: The codeword polytope CH(C) ⊆ [0, 1]n is the convex hull

of all codewords

CH(C) =
{

µ ∈ [0, 1]n | µs =
∑

x∈C

p(x) xs

}

000

110

101

011

100

001

111

000

010

000

110

101

011

000

111

(a) Uncoded (b) One check (c) Two checks

• the codeword polytope is always contained within the unit

hypercube [0, 1]n

• vertices correspond to codewords

First-order relaxation for decoding

µ1

µ2

µ3
µ4

µ5

µ6

µ1

µ2

µ2

µ3 µ4
µ4

µ5

µ6

µ6

• each parity check a ∈ C defines a local codeword polytope

LOCAL1(a)

• first-order relaxation obtained by imposing all local constraints:

LOCAL1(C) := ∩a∈C LOCAL1(a).

Illustration of fractional vertex

Check A:
2

6

6

6

6

6

4

0

1
2
1
2

1

3

7

7

7

7

7

5

=
1

2

2

6

6

6

6

6

4

0

1

0

1

3

7

7

7

7

7

5

+
1

2

2

6

6

6

6

6

4

0

0

1

1

3

7

7

7

7

7

5

Check B:
2

6

6

6

6

6

4

1
2
1
2

0

0

3

7

7

7

7

7

5

=
1

2

2

6

6

6

6

6

4

1

1

0

0

3

7

7

7

7

7

5

+
1

2

2

6

6

6

6

6

4

0

0

0

0

3

7

7

7

7

7

5

0

1
2

1
2

1

0 0 1
2

fA

fB fC

The pseudocodeword is locally-consistent for each check =⇒ it belongs

to the first-order relaxed polytope LOCAL1(C).

Some connections to physics and message-passing

• relaxed polytope LOCAL1(G) is constraint set in the Bethe

variational principle (YedFreWei02)

• Kikuchi and cluster variational principles: exploit higher-order

relaxations LOCALk(G) in a hypertree sequence

• for any tree T , max-product (Viterbi) is a dual algorithm for

solving linear program over LOCAL1(T)

• general connection between ordinary max-product and relaxed LP?

not valid in general (WaiJaaWil05)

• zero-temperature limits of sum-product −→ LP solutions?

not in general, but valid for “convexified” entropy approximations

Tree-reweighted max-product algorithm

Modified message update from node t to node s: (WaiJaaWil02)

reweighted messages

Mts(xs) ← κ max
x′

t∈Xt

(
h

ψst(xs, xt)
i 1

ρst

| {z }

ψt(x
′
t)

Q

v∈N (t)\s

z }| {
ˆ
Mvt(xt)

˜ρvt

ˆ
Mst(xt)

˜(1−ρts)

| {z }

)

.

reweighted potential opposite message

Properties:

1. Modified updates have same complexity as standard updates.

2. Key differences:

• Messages are reweighted with ρst ∈ [0, 1].

• Potential on edge (s, t) is rescaled by ρst ∈ [0, 1].

• Update involves the reverse direction edge.

3. The choice ρst = 1 for all edges (s, t) recovers standard update.

Reweighted max-product and linear programming

Theorem: For “suitable choice” of edge weights ρe, reweighted

max-product has the properties:

(a) Any fixed point M∗ for which the pseudo-max-marginals

τ∗s (xs) ∝ ψs(xs)
∏

t∈N(s)[Mts(xs)]
ρst have unique optimum

specifies an integral optimum LP solution. (WaiJaaWil05)

(b) For binary problems (with pairwise interactions), any fixed

point M∗ is an optimal solution to the dual LP. (KolWai05).

Remarks:

1. Some convergence guarantees (but still relatively weak). (Kol06)

2. From case (b): reweighted max-product has same behavior as first-order

LP relaxation for various IPs (e.g., Ising ground states; min-cut;

matching; vertex cover).

Edge appearance probabilities

Experiment: What is the probability ρe that a given edge e ∈ E

belongs to a tree T drawn randomly under ρ?

e

b

f

e

b

f

e

b

f

e

b

f

(a) Original (b) ρ(T 1) = 1
3

(c) ρ(T 2) = 1
3

(d) ρ(T 3) = 1
3

In this example: ρb = 1; ρe = 2
3 ; ρf = 1

3 .

The vector ρe = { ρe | e ∈ E } must belong to the spanning tree

polytope, denoted T(G).

§2. LP relaxation for decoding

• basic LP decoder: solve first-order LP relaxation (with cost vector

defined by channel) (FelWaiKar03)

µint

LOC(C)

CH(C) µfrac

• two vertex types: integral (codewords) and fractional (pseudocodewords)

• channel-dependent pseudoweight governs performance:

BSC pseudoweight = min

8

<

:

k |

k
X

i=1

x(i) ≥

n
X

i=k+1

x(i)

9

=

;

.

AWGN pseudoweight =
‖x‖2

1

‖x‖2
2

Some known results

• empirical results on LP decoding: slightly better than max-product,

slightly worse than sum-product

• LP decoding equivalent to message-passing for binary erasure

channel (stopping sets ⇐⇒ pseudocodewords)

• positive result: LP pseudoweight grows linearly for expander codes

and the binary symmetric channel (Fel+04)

• negative result: sublinear LP pseudoweight for Gaussian channel

(KoeVon03, VonKoe05)

• various extensions to basic LP algorithm

– adaptive LP decoding (TagSie06)

– stopping set redundancy for BEC (SchVar06)

– facet guessing (DimWai06)

– loop corrections for LP decoding (CheChe06)

Codes based on expander graphs

• previous work on expander codes (e.g., SipSpi02; BurMil02; BarZem02)

• graph expansion: yields stronger results beyond girth-based analysis

|S| ≤ α|V |

|C(S)| ≥ ρ|S|

• Definition: Let α ∈ (0, 1). A factor graph G = (V,C,E) is a

(α, ρ)-expander if for all subsets S ⊂ V with |S| ≤ α|V |, at least ρ|S|

check nodes are incident to S

Worst-case constant fraction for expanders

Theorem: Let C be an LDPC described by a factor graph

G with regular variable (bit) degree dv. Suppose that G is an

(α, δdv)-expander, where δ > 2/3 + 1/(3dv) and δdv is an integer.

Then the LP decoder can correct any pattern of 3δ−2
2δ−1 (αn) bit flips.

(FelMalSerSteWai, ISIT-04)

Comments:

• key technical device: notice of dual witness for LP success

– LP succeeds when 0n sent ⇐⇒ primal optimum p∗ = 0

– suffices to construct dual optimal solution with q∗ = 0

• caveat: constant fraction very low (e.g., c = 0.00017 for R = 0.5)

• potential gaps in the analysis

– analysis adversarial in nature

– dual witness relatively weak

Proof technique: Construction of dual witness

Primal LP: Vars. {µi, i ∈ V }, {µa,J , a ∈ F, J ⊆ N(a), |J | even}

min.
X

i∈V

θiµi s.t.

8

>>>><

>>>>:

µa,J ≥ 0
P

J∈C(a)

µa,J = 1

P

J∈C(a),Jv=1

µa,J = µv

Dual LP: Vars. {va, a ∈ F} {τia, (i, a) ∈ E} unconstrained

max.
X

a∈F

va s.t.

8

><

>:

P

i∈S

τia ≥ va for all a ∈ C, J ⊆ C(a), |J | even

P

a∈N(i)

τia ≤ θi for all i ∈ V

Dual witness to zero-valued primal solution

• assume WLOG that 0n is sent: suffices to construct a dual

solution with value q∗ = 0

• dual LP simplifies substantially as follows:

Dual feasibility: Find real numbers {τia, (i, a) ∈ E} such that

τia + τja ≥ 0 ∀ a ∈ C, and i, j ∈ N(a)
X

a∈N(i)

τia < θi for all i ∈ V

• random weights θi ∈ R defined by channel; e.g., for binary

symmetric channel

θi =

1 with prob. 1 − p

−1 with prob. p

§3. Probabilistic analysis of LP decoding over BSC

Consider an ensemble of LDPC codes with rate R, regular vertex degree

dv, and blocklength n. Suppose that the code is a (ν,
(

p
dv

)

dv) expander.

Theorem: For each (R, dv, n), we specify fractions α > 0 and error

exponents c > 0 such that the LP decoder succeeds with probability

1 − exp(−cn) over the space of bit flips ≤ ⌊αn⌋. (DasDimKarWai07)

Remarks:

• the correctable fraction α is always larger than the worst case

guarantee
3 p

dv
−2

2 p
dv

−1ν.

• concrete example: rate R = 0.5, degree dv = 8 and p = 6 yields a

correctable fraction α = 0.002.

Hyperflow-based dual witness

(DasDimKarWai07)

A hyperflow is a collection of weights

{τia, (i, a) ∈ E} such that:

(a) for each check a ∈ F , exists some γa ≥ 0

and privileged neighbor i∗ ∈ N(a) such that

τia =

8

<

:

−γa for i = i∗

+γa for i 6= i∗.
.

(b)
P

a∈N(i)

τia < θi for all i ∈ V .

Proposition: A hyperflow exists ⇐⇒

∃ a dual feasible point with zero value.

X
1 X

2 X
3

+

X
4

X
5

X
6

X
7

X
8

+ +

+ +

X
4

0.6

0.6
0.6

0.5

0.5
0.5

0.5 0.5
0.5

0.4

0.40.4

Hyperflow (epidemic) interpretation:

• each flipped bit adds 1 unit of “poison”; each clean bit absorbs at most 1 unit

• each infected check relays poison to all of its neighbors

Naive routing of poison may fail

overloaded bit
D

Dirty checks N(D)

Dc

• need to route 1 unit of poison away from each flipped bit

• each unflipped bit can neutralize at most one unit

• naive routing of poison can lead to overload

Routing poison via generalized matching

D

Dirty checks N(D)

Dc

Definition: A (p, q)-matching is defined by the conditions:

(i) every flipped bit i ∈ D is matched with p distinct checks.

(ii) every unflipped bit j ∈ Dc matched with max{Zj − (dv − q), 0} checks

from N(D), where Zj = |N(j) ∩ N(D)|.

Generalized matching implies hyperflow

Lemma: Any (p, q) matching with 2p+ q > 2dv can be used

to construct a valid hyperflow.

Proof:

• construct hyperflow with each flipped bit routing γ ≥ 0 units to

each of p checks

• each flipped bit can receive at most (dv − p)γ units from other

dirty checks (to which it is not matched)

• hence we require that −pγ+ (dv − p)γ < −1, or γ > 1/(2p− dv)

• each unflipped bit receives at most (dv − q)γ units so that we

need γ < 1/(dv − q)

High-level overview of key steps

1. Randomly constructed LDPC is “almost-always” expander

with high probability (w.h.p.)

• weaker notion than classical expansion: holds for larger sizes

• proof: union bounds plus martingale concentration

2. Prove that an “almost-always” expander will have a

generalized matching w.h.p.

• requires concentration statements

• generalized Hall’s theorem

3. Generalized matching guarantees existence of hyperflow.

4. Valid hyperflow is a dual witness for LP decoding succcess.

Generalized matching and Hall’s theorem

D
S1 S2

Dc

N(D) ∩N(S2)

N(S1)

• by generalized Hall’s theorem, (p, q)-matching fails to exist if

only if there exist subsets S1 ⊆ D and S2 ⊆ Dc that contract :

|N(S1) ∪ [N(S2) ∩N(D)]|
| {z }

≤ p|S1|+
X

j∈S2

max {0, q − (dv − Zj)} .

| {z }

available matches total # requests

Analysis over a simpler random ensemble

• analysis in standard ensemble: complicated due to coupling

between N(D) and number of requests from Dc

• consider simplified (but equivalent) ensemble:

– each node in Dc chooses Zj ∼ Bin(dv,
|N(D)|

m
)

– chooses a subset from N(D) of size Zj

• LP error prob. (over random subset D) bounded by probability

of existing contractive subsets S1 ⊆ D and S2 ⊆ Dc:

P
h

∃ S1 ⊆ D, S2 ⊆ D
c | |N(S1) ∪ [N(S2) ∩N(D)]| ≤ p|S1|+

X

j∈S2

Rj

i

• argument establishes existence of “almost-always expanders”

(with parameters much larger than worst-case sense)

Summary

• linear programming relaxations for optimization in graphical

models

– various connections to message-passing

– alternative route for non-asymptotic results

• probabilistic analysis of LP decoding for BSC

– hyperflow characterization of dual LP

– yields improved error-correction guarantees

– exploits “almost-always” expander (other applications?)

• various open directions:

– average-case analysis for other problems, ensembles?

– polytope structure for survey-propagation and SAT?

– guarantees on approximation hierarchies?

LP relaxation for “near-sub-modular” problems

0

25

50

75

100

0 0.2 0.4 0.6 0.8 1

σ • d = 2

σ • d = 4

σ • d = 6

σ • d = 8

0

25

50

75

100

2 4 6 8 10

N = 4

N = 128

N = 8

(a) Increased frustration (b) Increased coupling

